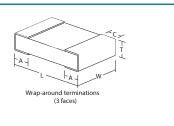
Resistors

High Current Jumper Chip

LRZ Series

- High current zero-Ohm link
- Thick film copper technology
- Current rating to 35A
- Typical resistance $1.5 \text{m}\Omega$
- Inductance below 0.2nH
- AEC-Q200 Qualified
- RoHS compliant and SnPb variants


All Pb-free parts comply with EU Directive 2011/65/EU amended by (EU) 2015/863 (RoHS3)

Flectrical Data

Size		0603	0805	1206	2010	2512	Notes	
Current rating @ 70 °C	amps	6	15	20	30	35	DC or AC rms	
2 second overload current @ 25°C	amps	12	30	40	60	70		
Residual resistance	o hms	0.003 max.					0.0015 typ.	
Ambient temperature range	°C	-55 to +150						
Dielectric withstand voltage	volts	200						
Temperature rise at rated current	°C	15	30	40	80	90		
Pad & trace area for rated current	mm²	40	40	50	100	300	See Application Notes	

Physical Data

Dimensions (mm) & Weight (g)								
	L	W	T	А	C	Wt		
0603	1.6 ± 0.3	0.8 ± 0.2	0.5 ± 0.1	0.3 ± 0.15	0.25 ± 0.15	0.003		
0805	2.0 ± 0.3	1.25 ± 0.2	0.61 ± 0.1	0.3 ± 0.15		0.009		
1206	3.20 ± 0.31	1.63 ± 0.2	0.61 ± 0.1	0.48 ± 0.25	0.48 ± 0.25	0.020		
2010	5.23 ± 0.38	2.64 ± 0.25	0.74 ± 0.1	0.48 ± 0.25	0.48 ± 0.25	0.036		
2512	6.5 ± 0.38	3.25 ± 0.25	0.74 ± 0.1	0.48 ± 0.25	0.48 ± 0.25	0.055		

Construction

A thick film copper conductive element and organic protection are screen printed on a 96% alumina substrate. Parts supplied under USA part numbering have the conductive element on the underside whilst those supplied under European numbering have it on the upper side. These two formats are functionally identical and interchangeable, and marking is always on the upper surface.

Terminations

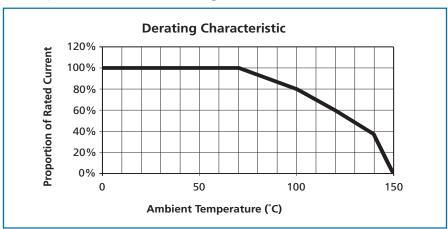
The wrap-around copper terminations have an electroplated nickel barrier and solderable coating, which ensures excellent 'leach' resistance properties and solderability. Chips can

withstand immersion in solder at 260°C for 30 seconds and are suitable for reflow or wave soldering processes.

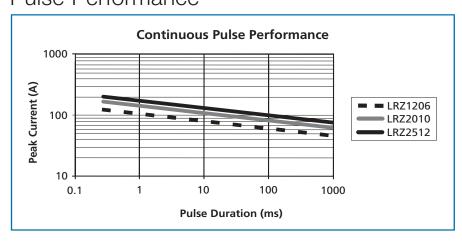
Marking

The body protection is resistant to all normal cleaning solvents suitable for printed circuits 1206 and larger size chips are marked R000. 0603 and 0805 sizes are not marked.

High Current Jumper Chip



LRZ Series


AEC-Q200 Table 7		Method	Result		
ref	Test	Metilou	Result		
3	High Temp. Exposure	MIL-STD-202 Method 108	Pass (see note 1)		
4	Temperature Cycling	JESD22 Method JA-104	Pass (see note 1)		
6	Moisture Resistance	MIL-STD-202 Method 106	Pass (see note 1)		
7	Biased Humidity	MIL-STD-202 Method 103	Pass (see note 1)		
8	Operational Life (Cyclic Load)	MIL-STD-202 Method 108	Pass (see note 1)		
14	Vibration	MIL-STD-202 Method 204	Pass (see note 1)		
15	Resistance to Soldering Heat	MIL-STD-202 Method 210	Pass (see note 1)		
16	Thermal Shock	MIL-STD-202 Method 107	Pass (see note 1)		
18	Solderability	J-STD-002	>95% coverage		
21	Board Flex	AEC-Q200-005	Pass (see note 1)		
22	Terminal Strength	AEC-Q200-006	Pass (see note 1)		
	Leach Resistance	Solder dip at 250°C	90s minimum		

Notes:

Temperature Derating

Pulse Performance

^{1.} AEC qualification based on testing of structurally similar LRF Series low value chip resistors, of which LRZ is the zero-ohm version.

 $[\]Delta R$ measurements are not applicable to the zero-ohm version.

^{2.} Although 2010 and 2512 sizes have passed temperature cycling and thermal shock, it is in general not recommended that ceramic chips this large be used on FR4 in a severe temperature cycle environment due to the possibility of solder joint fatigue.

^{3.} Full AEC-Q200 qualification applies to sizes 0603, 1206, 2010 and 2512

High Current Jumper Chip

Electronics

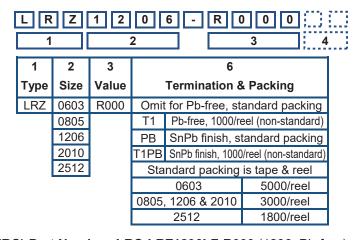
LRZ Series

Application Notes

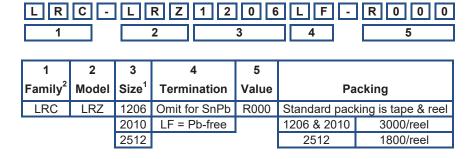
Conventional thick film "zero-Ohm" jumper chips typically have up to $50m\Omega$ resistance values and 1 to 2A current ratings. LRZ jumper chips offer a solution for currents over an order of magnitude greater by combining lower resistance values with better thermal conductivity.

Care should be taken when designing the associated printed circuit board tracks to ensure that they can carry the required current without excessive heating, for example by using multiple layers thermally linked with many vias. Any temperature rise caused by power dissipated in the PCB tracks themselves should be allowed for when calculating the ambient temperature in order to determine whether power de-rating should be applied. The minimum recommended pad and trace areas close to the resistor stated under Electrical Data should be provided at each terminal.

Pad and trace area close to the resistor is defined as being the total copper area within two squares of the edge of the solder pad, plus the solder pad area.


For multi-layer PCB's, this minimum area requirement should be met by surface layers rather than buried layers. The actual solder pad area follows the normal design rules for chip resistors.

LRZ jumper chips themselves can operate at a maximum temperature of 150°C (see performance above). For conventionally soldered jumper chips, the joint temperature should not exceed 110°C. This condition is met when the stated current levels at 70°C are used.


Ordering Procedure

This product has two valid part numbers:

European (Welwyn) Part Number: LRZ1206-R000 (1206, Pb-free)

USA (IRC) Part Number: LRC-LRZ1206LF-R000 (1206, Pb-free)

Note 1: Sizes 0603 & 0805 are only available under European part numbering.

Note 2: It is advisable to include the family in the USA part number, and it is essential to do so when ordering SnPb termination parts.